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ABSTRACT

The advent of low cost microcomputer hardware has
provided the capability for sophisticated control of
robot machinery, allowing such features as straight line
trajectory motions, sensory interaction, workstation
integration, external database access and off-line
programming.

The foundation of these capabilities lies .in the
architecture of the computer hardware and software
system. This real-time control architecture must
provide the framework for a logical partitioning and
structuring of the control tasks into functionally
separate modules that are bounded by well-defined data
interfaces. It is through this architecture definition
that robot controllers can be designed and built that
allow enhancement of control strategies through upgrades
in isolated modules, addition of sensors for real-time
modification of behavior, and integration into
workstations communicating with external knowledge bases
through the use of defined data interfaces.

This paper will report on such an architecture for real-
time control. The fundamental building block is the
input-process-output structure. PFrom this is derived a
generic control level that can be stacked into multiple
levels to provide an environment for hierarchical
decomposition of the task. The more complex the task,
the more levels that are required. Efficiency and
reliability are obtained through a highly interactive
user interface with diagnostic probing and display
capability that allows quick evaluation and modification
as required to accomplish the intended tasks.
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I. INTRODUCTION

The ability of a robot to carry out a programmed task
successfully is dependent, to a large part, on the
control system that runs it. Since robots were first
introduced, 15 or 20 years ago, their control systems
have improved dramatically, primarily due to the
introduction of high-speed, low-cost, very power ful
computer systems and the corresponding sophisticated
software required to generate real-time control. This
paper will attempt to address the development of these
control systems and partition them into four major
classes. Each of these will be described by a set of
characteristics, with some perceived advantages and
disadvantages that help distinguish one from the other.
These classes are arbitrary in their partitioning but
help to demonstrate the range of capabilities and the
significant contributing factors that allow certain
capabilities.

It will be shown in the four different classes of
controllers outlined in this paper, that the
capabilities of the robots increase with the use of
sensory information and with their integration into
larger systems. However, these additional capabilities
come at the cost of more complexity in the information
processing. This paper will also describe the research
into robot controller architectures presently being done
at the National Bureau of Standards.

The major requirements that these systems will be
measured against are modularity, flexibility and
reliability. Modularity describes the ability to easily
add new capabilities or components to the system such as
different sensors, different robots with different
mechanical configurations, and the ability to integrate
the controller into workstations of which the robot is
only one part. That is, modularity is the ability to
treat various functional parts of a large system as
distinct components which can be replaced with other
modules as long as they carry out the function and meet
the interfaces.

Flexibility describes the control system's ability to be
reprogrammed to handle different parts in the
environment; to do different tasks; to handle different
work environments in the sense of different trajectory



paths, different avoidance maneuvers, different approach
and departure paths to and from the various work pieces.
Thus, flexibility is the ability to deal with changes in
the application task of the robot.

Reliability is concerned with the basic ability of the
user to understand the system that he has created, so
that he can ensure that it will do what is intended. To
this end it is important to have a system comprehensible
to the user at all levels of detail, to have extensive
diagnostic capabilities, and to be interactive in the
sense that the user can probe the system, can put in
certain conditions, and quickly see what the response of
the system will be.

II. CLASSIFICATIONS OF ROBOT CONTROLLERS

The four major classifications of robot controllers that
will be made are: 1) the record/play-back, 2) computer
assisted record/play-back, 3) programming language based
control system, and 4) fourth generation controllers.

I1.1. Record/Playback Controller

The first type of controller, record/playback, is
basically a system that looks like a tape recorder. The
user can lead the robot through a series of points in
space, recording each of these points, essentially on a
tape recorder, to be played back at some later time. An
advantage of this system is that the user interactively
programs the robot and sees exactly what he is telling
it to do. There is a single sequence through space that
the robot is allowed to follow that is visible to the
user during programming and it is this sequence, and
only this sequence, that is repeated over and over
again.

A disadvantage of this type of system is that it can be
very tedious for the user to program precision tasks
with the robot. Most robots include revolute joints. In
this joint space it is not easy to control straight-
line motion of the robot, or to cause the tool-tip of
the robot to move along some arbitrary path by moving
these rotating joints. Thus, very precise positioning
of the end point and the orientation of the robot can be
very tedious, time consuming and difficult.



Another disadvantage of the system lies in the inability
to easily modify what the robot has been programmed to
do. The points are played back in the same sequence
that they were recorded. This means that if the user
wants the robot to move to a slightly different
intermediate point, he must again lead the robot through
the sequence up to that point, re-record the new
position, and then the robot can play back the new
sequence. It is not possible to insert additional
points, nor delete points out of the sequence, so there
is a lack of flexibility in being able to program new
tasks or to handle different parts with the system.
Moreover, a stored program taught on one robot cannot be
transferred to another robot of the same type and have
the same task trajectories executed. This is mainly due
to the differences in link lengths, joint orientations,
slightly different placements of joint position sensors,
and different values of gain parameters in the servo
systems.

In addition, this particular type of controller has no
decision capability. It is not capable of branching to
carry out one of two alternative task sequences; it
must follow a single sequence of recorded points. This
means that it is not possible for the controller to
interact with simple sensors or other devices such as
workstation controllers or machine-tool controllers.
Thus, the tasks that this type of control system can
deal with are only those tasks that can be accurately
and reliably defined by a sequence of fixed points that
the robot must follow through space. If the error that
the robot has in its repeatability in getting to these
points, added to the the misalignment of the parts,
results, in an offset greater than that required for
successful completion of the task, then this type of
controller cannot be used.

11.2. Computer Assisted Record/Playback

The second type controller is that of computer assisted
record/play-back. A computer that performs certain
limited basic functions has been added to enhance the
user's ability to program the robot. The main feature
provided by computer-assist is the ability to calculate
the transformation from some defined coordinate system
to the joint coordinates of the robot. The se
controllers allow the user to program straight line
motions, motions about a tool-point axis and other
trajectories which reference some relatively robot



independent coordinate system. That is, the user can
describe the position or motion of the tool point in a
convenient representation, and that position will be
transformed into the proper joint values for the robot.
The user still has the advantage of being able to teach-
program the robot, thus interactively seeing what the
robot is going to do during the execution of the task.
But now, programming is easier since the user, through
the joy-stick, commands motions along straight-line
paths, and orients the end effector for precise
positioning more easily than by 3joint space
manipulations.

These controllers provide a higher degree of trajectory
control during execution than the record/playback
controllers. That is, even though the programming still
consists of recording only the end points of the
trajectories, the executed trajectories can be straight
lines rather the arc type motions about the rotary
joints. This straight line motion is due to the real-
time computation of the coordinate transformations. The
end points are stored in the form of some workspace
coordinates such as cartesian, cyclindrical or

spherical. Intermediate trajectory points are
calculated during execution and transformed to the
corresponding robot joint coordinate values. - This

results in controlled-trajectory motion in the workspace
coordinate system.

A further feature provided by computer assistance is the
ability to edit the programs that have been generated.
The user is allowed to modify the trajectory paths of
the robot by the addition or deletion of two or more
points without being forced to re-record the remaining
points ,0of the sequence.

In addition, computer assisted controllers usually
provide the ability to do simple branching between
different sequences of paths based upon some input
value. In this manner the controller for the robot can
use simple binary switches to determine alternative
actions. For instance, a sensor may be used to
distinguish between two differently shaped parts. The
robot is programmed with two different procedures, one
for each of the parts. Depending upon the binary value
read in from the sensor, the controller branches to one
or the other of these sequences.



Interlock capabilities are also provided. The
controller may be halted at a defined point in the
program until a signal from an external device indicates
the appropriate time to continue. For example, when a
machine tool has finished a cut, it may indicate through
a switch that the controller can now send the robot into
the work environment to pick up the part. A computer
assisted controller may also generate output signals
that can be used for a positive handshake interlock with
other devices.

The interaction with sensors is, however, very limited
with this type of controller. It can handle the binary
type of sensors, but does not have sufficient
programming capability available to the user to allow
for the branching and analysis required by the
sophisticated data that would come back from complex
sensors such as vision, force and torque, or proximity.

IT1.3. Programming Language Based Control System

The third type of controller is supported by a full
computer programmlng language. These are the computer
based programming systems- that have become available in
the past few years (2-4). They offer the user the
ability to do complex decision programming and
processing. Control programs can be written so that data
from different sensors such as vision, proximity, force
and torque, can be processed and decisions made based on
this information. This programming capability includes
the ability to edit the programs and do essentially
total off-line programming if the coordinates of the
workspace are well known. In most cases they are not
precisely known, therefore some method of teach-
programming must still reside with these systems to move
the robot to certain points in space for a particular
task, record the coordinates of these points in joint
space and transform them back into cartesian space.
Once this data is entered into the system, however, it
can be edited, moved, or modified. Approach paths to a
point can be defined by algorithms that will determine
how to vary the path of the robot based on available
sensory data. Trajectory paths between points may be
constrained to follow a predefined surface, rather than
merely straight line motions. The task can essentially
be constructed as a computer program.



A number of convenient library routines or primitives
may be provided with the system. Usually there exists a
trajectory algorithm used to generate paths in space.
The ability to do general coordinate transformation
matrix operations may also be available. Using these
matrix operators, different end-effector configurations
and multiple coordinate frames can be specified in the
system to calculate the position of the end-effector and
to control the robot based on the motion described
relative to different objects such as trays, machine
tools, etc. Delta motions - e.g. five inches in the X
direction - provide convenient ways of specifying path
modifications to occur in real-time based on incoming
sensory data.

Because of the high level programming language provided,
these type of systems have come to be used as the
highest level controller in the environment, taking on
the aspect of the coordinator and controller for a whole
workstation. These robot controllers have full computer
capability which many of the other components or devices
in the manufacturing environment do not. Thus, when a
robot controller of this type is to be used with machine
tools, fixturing, and transport devices, more than
likely the supervisory and coordinating programs will be
written inside the robot controller because of the
programming language "capability to handle these
interactions and to define what the overall task should
be.

The disadvantage of this system is one that is shared by
all large programming systems. That is, without a very
rigorous high-level architecture to which this system is
confined in its growth and complexity, it can quickly
become a large set of software programs that are hard to
understand in their interactions, difficult to trace in
their effects from modifications, unpredictable in their
execution behavior, and, in general unmanagable,
and therefore unreliable as a systenm. Most present
robot controllers were not intended to be part of a
larger system. This type of controller provides the
user with tools for programming the robot. However, as
the tasks get more and more complicated, there is no
guideline, there is no higher level structure, to
control the growth of these programs in any way that
will allow them to be extensible and to have inter face
capability to other systems. It is also difficult to
control the growth in a way that the user can feel
confident in the reliability of the system.



The tendency to make this type of system the highest
level controller also tends to create a system that may
not be easily integrated with yet larger systems. The
robot, which is a mechanical device of about the same
task importance in the overall system as a machine tool,
now has in its controller the control of the robot and
the the supervisory control to coordinate the robot with
the machine tool and other devices in the workstation.
Interactions with the rest of an automated factory must
now occur through the robot controller in order to
coordinate the command request into the workstation for
the different parts to be made. This includes the
movement of new parts and new tools in and out of the
workstation, accessing the data base for the parts
program for the NC tool as well as for parts
descriptions from CAD data bases for use with sensory
processing algorithms. Since the workstation
coordinating and supervisory programs reside within the
robot controller, the interactions of the other
workstation components may not be clearly delineated
from the robot's operations, which will result in a
system that is difficult to understand or reprogram.

I11.4. Fourth Generation Controllers

Fourth generation controllers are an area of research at
a number of institutions today. The philosophy behind
these controllers is that the robot controller is but a
modular component of a larger integrated system. As
such, it will have certain constraints imposed upcn the
design and construction of the processing algorithms
that occur within it - the type of interfaces, the
information paths, the data flow requirements - so that
it acts as an integral but modular component of this
larger automated system. This type of controller
provides all of the same capabilities that are available
with the three previously described controllers,
including the advantages that have been obtained by
adding computers to the system. It also provides the
further advantage of creating a framework for a flexible
system, where different parts and workpieces can be
handled in different work environments. These
controllers are based on system architectures that
emphasize system modularity where the functions to be
performed are partitioned and defined in a highly
structured manner, creating well-bounded modules with
defined data inter faces that will allow for different
sensors, different robots, and even the controller
itself, to be plugged into different configurations.
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A well structured system imbeds information about the
operation of the system by the very organization of its
components. Information maintained in a rigid structure
helps increase the reliabilty of the system since it
makes the system more comprehensible to the user with
everything kept in a specified place. The structure
provides a mechanism whereby the user, much like using a
road map or a file cabinet, Xnows where to find a
certain processing task in order to make additions to
that task, modifications to it, or to do diagnostic
analysis on it. Generic modules greatly reduce the
complexity of the system by requiring the user to
understand only a small number of processing modules
which are repeated through the entire system.

I1.5 Summary

Figure II.1 summarizes the advantages and disadvantages
of the four types of controllers.

III. NBS CONTROL SYSTEM ARCHITECTURE

The National Bureau of Standards has concentrated
various research efforts in the area of integrated:
control structures for fourth generation controllers.
Its interests are in defining the framework - the
organizational structure and processing requirements -~
to design an integrated, totally automated factory
system (5-9). A robot controller is but one component,
one module, in this integrated system. It has to
interface into the overall system as a component that
will dhare its data with the system. It relies on an
external data base administrator to provide the
information generated by other components in the system.
The basic work to date has been in defining the system
architecture. The architecture (10,11) has two main
components - processing and structural. The processing
architecture defines the component modules of the
system, how the internal functioning of each module is
accomplished and how and when information is exchanged
between modules. The structural architecture describes
how each of the modules interrelates in order to have
the system exhibit the desired real-time sensory-
interactive behaviour.



III.1 The Processing Architecture

It has been found through experimentation at NBS over a
number of years, that certain basic techniques have
greatly aided the development of these complex control
systems. The first is the use of the input-process-
output structure to create well-bounded functional
modules with specified data interfaces. The second is
to use generic structures wherever possible within the
components of the systenm. The third technique is the
use of a common memory based communication mechanism to
move data among all the system components, and the last
is to execute all components in the system on a
repetitive cycle.

I1I1.1.1 Input-Process-Output

The. input-process-output structure (Figure III.1) is the
fundamental building block upon which all the processing
within the system will be based. The goal is to provide
a system of functionally well defined modules with
interfaces between them that provides all the
capabilities mentioned previously. The basic model
becomes that of a functional module that processes its
input data set to generate a resulting set of output
data. The function that each module performs should be
independent of other processing that might occur within
the system, with information required between modules
being passed only through the interface data sets. New
capabilities may be added to the system - new sensors,
new algorithms for directing robot trajectories, new
end-effectors - all by providing modules to handle
these components, and integrating them with the other
components of the system through their data interfaces.
The robot controller itself is a component defined in
this manner and may be integrated with a higher level
controller, such as a workstation, by meeting the
interface data requirements that are defined for it.

A great deal of care has to be given to the design of
the overall system based on these type of modules. It
is not difficult to generate a system of modules that
are so completely interwoven in their function that the
modularity is lost and that it is impossible to clearly
define their interfaces. These types of systems are to
be avoided since a user cannot understand the function
of one of the modules without having to understand what
all of its interrelated modules do as well. Thus, it is
extremely important to emphasize the need to define well
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bounded functional modules which are as cleanly
separated as possible from all other modules in the
system, 80 that the function of the module can be
understood by simply looking at its input data and
output data and a description of it processing. 1In
addition, this technique facilitates module testing and
debugging as, by supplying input data sets to a module,
it may be tested in isoclation, either before being added
to the system, or afterwards, to diagnose a problem.

I11.1.2 Generic Processing Structures

Having structured all the components of the system into
the input-process-output format, a problem develops in
that the number of functional modules themselves becomes
large making it difficult for the user to interact with
the system. A primary method of dealing with this
problem is to develop generic processing structures.
That is, attempt to make the operation of the modules
look the same, so that they appear to be replication of
one processing format. Even though there are a large
number of components, the user is not overwhelmed
because, having understood one of the components, he
knows that he can understand the operation of the
remainder. of the components. This. use of generic
structures is extremely important in the development of
a successful system. ’

The use of the input-process-output structure is a type
of generic processing. However, here it is desired to
specify a generic processing within the modules. This
structure can be viewed as three separate processing
operations: preprocessing, decision processing, and
post-processing (Figure 1I11.2).

The decision processing is the major decision mechanism
used to identify the approprate procedures that will
execute based on a few high-level variables. It
specifies the various test conditions and the
corresponding output procedures to be executed if those
test conditions are satisfied. Preprocessing evaluates,
scales, reduces, and transforms the input data into the
more appropriate set of variables used by the decision
processing. Postprocessing picks up the extraneous, but
necessary, additional processing required. It performs
such functions as saving internal variables or
reformatting algorithm results for output or transfer to
other modules.
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This technique of using a generic processing format does
much to ease the user's interaction and comprehension of
each unit module and can be applied to larger system
components as well.

III.1.3 Common Memory Based Communications

The use of the above generic structures creates a system
of separate components that interact only through their
input and output data inter faces. To connect any two
components, the output data of one must become the input
data of the other. This implies that there must be some
method to transfer data between these components. A
communications mechanism has been defined that uses a
common memory area. A copy of the output data is moved
to a duplicate buffer area in common memory and from
there moved into the input buffer of the other module
(Pigure III.3).

This type of communications provides the system with a
number of advantages. First, the addition or deletion
of processes or components into the system is
simplified. Data is transferred between components
through an independent link, therefore each component
may be developed in isolation by supplying appropriate
test values to its input data set. Once the modules
have been tested,” they may be integrated by allowing the
communications mechanism to supply their data. It means
that even when the system is integrated, each of the
processing modules executes as an isolated process
bounded by its data interfaces. Whether the input data
to a module is supplied by process B or new process B'
is immaterial. Second, the buffering of data in common
memory is a convenient structure because it eliminates
any need for synchronization between sending and
receiving modules. Data is moved from the first module
to common memory whenever that module is ready to send
it, and moves from common memory to the second module
whenever that module is ready to receive it, totally
asynchronous with the first module's execution. This
helps simplfy the implementation of these processes on
multiple distributed computers.

Moreover, the existence of the duplicate copy of these
system buffers in common memory makes available to an
additional process, such as a diagnostic process, the
present values of all of the critical variables in the
system. If the communications process is executed
periodically, then there is an interval when the data in
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the common memory buffers are not being altered. During
this time, a diagnostic process can capture and display
this data for user evaluation of the real-time internal
behavior of the system.

II1.1.4 Repetitive Cycling Execution

The real-time aspect of control is based on the concept
of producing a response to changes in input data soon
enough for that response to be effective. If a control
cycle ( in which the input data is sampled and the
output response generated ) is repeated at a
sufficiently fast rate, the system will provide apparent
continuous control in real-time.

The communication mechanism described above can be used
to define this repetative processing through the use of
a periodic synchronization pulse. The communication
process can move all the available data to all the
processes that are ready to process. After the data
transfer is done, those processes will execute acting on
the data present in their input buffers. The
communications process itself runs periodically off a
real-time clock. This defines the basic control cycle.
Every cycle, after communications has transferred the
data, each process .that is ready sample its data and
generate its output response (Figure III.4). All of
the system processing occurs each cycle based on the
current input data set. This means that the system is
not event driven in the sense that an event generates an
interrupt which modifies the control flow. All of the
relevant variables are sampled each cycle. That
information is processed through totally deterministic
preprogrammed algorithms. The system therefore offers
a very deterministic, well-defined view of a control
algorithm that executes in real-time and further, can be
executed offline for diagnostic testing by supplying the
data to its interface.

~II1.1.5 Benefits of the Processing Architecture

This processing architecture provides a framework for
breaking the processing of the system into component
modules, and to control the design of those modules.
The technique of building the system as well-bounded
functions with clearly defined data interfaces directs
the total modularity of the system. Different
components and capabilities can be added to the system
by adding new modules that perform the desired function
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through a well defined data interface.

By using generic processing structures in the systen,
the reliablity of that system is increased. The user
will be able to understand how to build the system to
make it do what he wants it to do and to understand how
it is working. Moreover, he will be able to modify or
add pieces to the system in a structured manner that
will ensure that those changes will still maintain the
correct operation of the system.

The common memory communication mechanism along with the
well-bounded modules with data interfaces helps provide
a system with a highly interactive user-friendly
programming environment. A typical problem with large
complex systems is that even though the individual
subcomponents may be understood and that their action
well defined and well specified, their behavior when
assembled together in large systems is often unexpected.
By using a diagnostic tool to display the system
parameters from common memory during execution, the
user can more easily understand, and therefore improve,
on the system per formance.

The repetitive .sample control structure allows for a
totally deterministic control system in which components
can be evaluated piece by piece and which will behave
offline, in the non-real-time non-integrated condition,
as they will in the entire integrated system.

II1.2 The Structural Architecture

A structural architecture for a fourth generation robot
controller that is a component part of a larger system
architecture for an entire automated factory has been
developed at NBS. The robot controller is one module
between a workstation controller and a robot joint
controller, with access to sensory processing and world
model data relevant to the type of task that it will
handle (Figure 1III.5). Several implementation
techniques have been developed which, when applied with
the methods of the processing architecture, organize
complex information processing into a flexible system
which will effectively provide sensory-interactive real-
time control (12). These include the use of generic
processing levels that perform hierarchical task
decomposition, the specification of interfaces between
control levels, and the separation of task and data for
all components of the system.
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I11.2.1 Generic Task Decomposition lLevels

The overall structural architecture is based on a set of
generic levels, generic processing modules, that perform
the hierarchical task decomposition of the input
commands for the robot controller. Figure 111.6 shows
a robot controller defined as a set of three processing
levels. The concurrent operation of these control
levels provides a stepwise decomposition of high level
tasks into successively simpler and simpler component
subtasks. By only requiring each level to decompose the
task a little further in the next lower set of subtasks,

it is relatively simple to comprehend and manage the
control function of each level.

It is very desirable to make these control levels as
generic as possible - that is have essentially the
identical processing structures - so that having
understood how one of the control levels performs, it is
fairly straightforward to understand how all the others
perform. This allows the user, as well as the system
designer, to create systems that are reliable, modular,
and to develop plug compatible interfaces through the
data sets that bound each of these modules. The generic
control level is defined as a process that will do a
partial task decomposition of its input command into a
sequence of not more than seven or eight subcommands.

The level is thus structured in the input-process-output
format.

Keeping with the processing architecture previously
discussed, processing within the level has been further
defined and partitioned into a preprocessing, a
decision-processing, and a post-processing phase. The
major decision processing that occurs within a level is
to take the input command, relevant data from the
sensory processing/world model, and status from the
level below, and decide on the next output command,
output status and request for the sensory system
(Figure 111.6). This is the major decision processing
that occurs within this control 1level. The
preprocessing for a control level is used to take the
input data and convert or scale it to create variables
that will simplify the determination of the next
subcommand. The post-processing phase is used to
perform utility functions such as reformatting data ard
maintaining internal status.
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Each of the different control levels can be described by
this generic type of processing. The functional
processing within each level identifies for the user
where appropriate information should be contained. This
increases the ease with which the user can upgrade the
capabilities of the system, such as deciding where to
add additional sensors. The generic structure of each
of these major components ( the levels ) provides the
consistent framework for the user to know where each
module belongs within the system.

For example, the robot controller in Pigure 1I11.6 shows
a three level task decomposition. The TASK level takes
input commands from the workstation and generates
subcommands that define major end points for the robot
motions. The ELEMENTAL-MOVE (E-MOVE) level generates
trajectory segment goal points that define a complete
path to an end point. The PRIMITIVE level generates each
of the intermediate path points along the trajectory
segments required to move the robot to the goal points.

Consider the addition of a vision system that is capable
of providing ranging, feature detection and object
recognition. Identification of where these different
types of information should be added to the system is
made straightforward through the system structure.
Ranging information is appropriate at the PRIMITIVE
level since it is doing high speed servoing of the robot
motion. Full object recognition is most appropriately
added at the TASK level since it is concerned with ma jor
motions of the robot. The actual algorithms for
handling this sensor data at each level are easily
included into the code because of the well-defined
framework of the processing structure.

111.2.2 Control Interfaces

Each generic control level is connected through data
inter faces to three other components within the system.
There is an interface to a control level above that
performs a higher level decomposition. This inter face
is composed of two buffers - a command buffer from and a
status buffer to the higher level. In like manner,
there is a similar interface to a control level below
that consists of a command buffer down and status buffer
back from this lower 1level. There is an interface
horizontally to the sensory processing/world model
system, which includes the request buffer to this
system and the feedback response buffer.
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These three major inter faces surround each of the
generic control levels. Viewed differently, they act as
as a set of input data that is processed to generate a
set of output data. The input data is the command in
from the level above, the sensory processing/world model
feedback, and the status coming in from the level below.
The function of the control level is to take those three
major data interfaces and generate the output data which.
consists of a command out, a sensory processing/world
model request out, and a status out to the level above.

The interfaces that exist between these control 1levels
then, become the interfaces that allow for the type of
modularity required in the system (Figure I11.5). The
generic task controller decomposes the task into simpler
subtasks until eventually the task is described in terms
of the sequence of positions and orientations of the
end-effector in space. This information can then be
passed across the interface to a robot joint controller.
This interface can potentially be in a robot independent
form. The function of the robot joint controller then
becomes the transformation of the interface information
into the joint values for a particular robot that are
required to orient and position the end-effector at the
commanded pose. _
The information that comes from the workstation
controller often defines an interface of the same type.
That is, the commands that are issued from the
workstation controller are generic to the task, not the
particular robot or robot controller that's involved.
All that is required is that those input commands can be
be decomposed by the particular robot controller and
status reported back to the workstation according to the
defined interface information.

The interface to the sensory processing/world model is
really a series of interfaces, one to each of the
different control levels found in the architecture. The
high 1level information, 1like that of whole object
recognition is an interface into the TASK level. An
interface containing feature or force and torque
information would be to the E-MOVE level since this type
of feedback usually affects the real-time modification
of trajectory segments. An interface describing perhaps
touch or proximity or some other component of force and
torque might be data that is used by the PRIMITIVE level
to modify intermediate points of the trajectory,
servoing the robot's motion every control cycle.
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These interfaces offer the potential for providing plug
compatibility with many different types of sensors or
other components with the controller. If the controller
consists of functional modules bounded by clearly
defined interfaces, and if a proper communication
structure is set up such that these are not directly
coupled with the elements that are developing the
information on the other side of the inter faces, then
these blocks can become different components that can be
plugged together in different ways without resulting in
a bundled systenm.

II1.2.3 Task and Data Independence

In order for the system to display the type of
flexibility required in an automated factory, it is
important that the data, as much as possible, be totally
separated from the actual algorithms for each of the
modules. All of the processing within the system
should be done in terms of symbolic variables whose
values can be supplied at execution time. There should
be no constants imbedded within the code.

For example, the transfer task - to move an object from
one point to another - is defined by the decomposition
algorithm that has the following subcomponent actions:
move to some source location, pick up an object, move to
some destination location, set down the object, and
withdraw. That task decomposition is independent of
whatever the object is, and wherever that object is to
be picked up and put down. The particular numeric
representation that defines the object and the locations
in space it is to be moved through, is the data that
must be separated entirely from the task. Using this
technique, it 1is possible to think of generic
controllers that are programmed to carry out whole
classes of task decompositions which accept at
execution time the data that specifies the particular
objects, particular locations, particular workstations,
particular robots, that have to be used for one
particular task.

Thus, the data in the system that defines the specific
instances of the parts to be handled, the trajectory
paths through the workspace etc, is totally separated
from the algorithms. It can be created off-line,
perhaps developed through a CAD system, or through some
other off-line programming environment, to be loaded
into the system when the particular task is to be
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executed. The partitioning of the control algorithms
from this data will provide a mechanism for the
flexibility that is desired in the final system. That
is, the algorithms for a particular task can be
transferred to different workstations, amd loaded with
the data pertinent to that workstation and that task can
still be accomplished even though it had not been
"taught" or "programmed"”, in the traditional sense, for
this specific part on the new workstation.

11I1.2.4 Summary

The original requirements that were placed on the system
were modularity, flexibility, and reliability. The
system is modular if different sensors could be added
for a particular task, if the controller can inter face
to different robots allowing one robot to be substituted
for another in a workstation, if one trajectory module
could be substituted for another, or if different
workstation controllers could talk to the same robot
controller. This type of modularity, being able to
Plug these units together in much the same way that a
stereo system can be configured with different
components, requires a very strict and rigid
architecture and structure of the system that allows
components to be developed as independent functional
modules with well defined data interfaces. The systen
must also be structured so that where each component is
to be added is readily apparent. In addition, the
system must provide a mechanism to execute each of these
individual components as a unit, transferring data among
them and still maintaining the timing requirements to
provide stable real-time behaviour.

Flexibility is the ability to handle the multiplicity of
work ‘pieces, to easily program different tasks, and to
define different trajectory paths through space involved
with different tasks. This ability requires a
structure where only the data that describes the
numerical values of the new coordinates of the systemn,
or sizes of the parts, or locations of trajectory points
need be altered. 1Ideally, these can be altered from
some higher level off-line system, such as an overall
CAD system. The sepration of task algorithms from the
data creates a system where it is possible to think of
off-line programming through data structures without
having to reprogram controllers to handle the task to be
accomplished. This adds a tremendous amount of
flexibility in the system, although it creates
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additional complexity in trying to develop these type of
structures.

Reliability is provided by an architecture that so
identifies the components of the system that the user
can quickly find and locate and zoom in on any aspect of
the system to understand exactly how its working at some
level of detail. The user must interactively be able to
identify how each function reacts to changes in input
data, be able to set up conditions so that the systea
can run in real-time, with all of the processes
executing in parallel and with the user still able to
track and display and observe the different internal
states of the system.

Much of the processing and structural architecture
described has been based on the concept that people can
only deal with a small amount of information at one
time. The system is built as a set of modules, each of
which totally bounds a certain small part of the
function and being able to understand the workings of
all of the parts, enhances the users ability to interact
with, deal with and understand the function of the
integrated system. In addition, by maintaining all of
the modules in a generic structure, a generic framework,
to process information in the same way, to use the same
ma jor data inputs and outputs, creates a very familiar
environment at each level to the user. This will
ultimately result in a more reliable system.

This whole area of fourth generation controllers is
still in need of additional research before its
feasiblity in totally automated systems of reasonable
functional complexity can be verified.
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RECORD/PLAYBACK

COMPUTER ASSISTED
RECORD/PLAYBACK

PROGRAMMING LANGUAGE .

BASED CONTROLLER

4TH GENERATION
QONTROLLER

ADVANTAGES

® Highly Interactive
& Fagy to see what
program will do

DISADVANTAGES

8 No cantrol over path
motion

® Hard to alter progrems

# No sensory interaction

# Progrem is task and robot
specific, not partable

~ % Mast be progremmed online

# Interactive

® Bimary sensor capability
# More cnvenient user
interface thru Joystick

& Programs may be edited
offline

® Path motion defined

# Full programming langiage
& Ayl range of sensor

capabilities
% Can be mdified or

reprogramned
® May be programmed offline

#* Full diagnostic capabllity
# Capable of integratim
with larger systems

IIa

® Minimal error detection
# Precision programming tedious

& nly minimal sensar
interaction

® Mzy be robot/task specifie,
not partable

& Miniml errar recovery

® More camplex to program

® Not designed to interface
to high level system

#* Debugging difficult

# Mxh effat required building
data driven generic tasks and
interfacing to extermal systems

® Complex to program

# Requires sophisticated
ocomputer hardware and
softuare

# Research area, not available
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